
Pytorch 新闻分类任务(学习笔记)
目录结构
models文件夹
该文件夹显示搭建的网络结构。
里面有TextCNN.py
和TextRNN.py
两个文件,对应的网络结构是CNN和RNN,这里我们使用RNN。
THUCNews文件夹
在该文件夹下面有三个文件夹:data
、log
和saved_dict
。
data主要是我们的数据。
我们本次要做的一个实验是对一个新闻的一个分类。
首先我们看一下train.txt
训练文件数据下的内容。
里面的训练样本格式是:内容+tab+新闻分类的值。
这里一共有10个类别这10个类别记录在我们的class.txt
文件中,训练样本一共有18w行数据。
除此之外dev.txt
文件和test.txt
文件分别代表的我们的验证集和测试集。
那么如何让计算机理解我们的内容呢?
一般我们的做法是不是将内容进行清洗(举例:去掉(图)
这种毫无意义的东西)之后,对内功进行分词或者分字,通过对应的语量表做成对应的索引id。
但是这种索引计算机根本不认识,或者说是很死板的认识。
然而Embedding
映射表可以解决这样的问题,它是由一些知名的大厂训练出来用于将词或字映射成向量(没有大量的数据是训练不好的)。
词向量矩阵=batch
(文本处理大小) max_len
(文本长度) E
(映射维度)
关于语量表这里准备的文件是vocab.pkl
文件,关于embedding
准备了腾讯的和搜狗的映射表。
循环递归神经网络 RNN
它主要解决了一个时间类型、文本类型的数据的模型。
如下图所示:
我们可以看到,它仅仅是在普通的神经网络隐藏层中对特征进行再一次的,在又一次学习中既包含了新的特征又包含了旧的特征。
学习举例:如果我们有一个t1的时间数据和t2的时间数据,如果是普通神经网络模型它会将其中都放入同一输入层,二者没有凸显出时间的关系。
当使用RNN,在隐藏层中训练了t1数据,t2进入隐藏层时又回把t1和t2同时进行训练出新的特征。
当我们有很多个时间序列数据时,我们一般只需要保留最后一个全链接层,因为它包含了前面所有的特征。
关于其中产生的中间数据结果,将全部忽略只需要保留最后。
代码示例
我们的主要代码在run.py
中。
import time
import torch
import numpy as np
from train_eval import train, init_network
from importlib import import_module
import argparse
from tensorboardX import SummaryWriter
parser = argparse.ArgumentParser(description='Chinese Text Classification')
parser.add_argument('--model', type=str, required=True, help='choose a model: TextCNN, TextRNN, FastText, TextRCNN, TextRNN_Att, DPCNN, Transformer')
parser.add_argument('--embedding', default='pre_trained', type=str, help='random or pre_trained')
parser.add_argument('--word', default=False, type=bool, help='True for word, False for char')
args = parser.parse_args()
if __name__ == '__main__':
dataset = 'THUCNews' # 数据集
# 旋转Embedding
# 搜狗新闻:embedding_SougouNews.npz, 腾讯:embedding_Tencent.npz, 随机初始化:random
embedding = 'embedding_SougouNews.npz'
if args.embedding == 'random':
embedding = 'random'
model_name = args.model #参数model选择模型:TextRNN 可选:TextCNN, TextRNN,
if model_name == 'FastText':
from utils_fasttext import build_dataset, build_iterator, get_time_dif
embedding = 'random'
else:
from utils import build_dataset, build_iterator, get_time_dif
# utils包中用于加载数据集、分词、分字的工具
# 导入模块 models.TextRNN 模块
x = import_module('models.' + model_name)
# 初始化该模块的Config类,进行配置参数
config = x.Config(dataset, embedding)
# 设置随机数的一致性,举例:第一次是3,第二次是6..每次都按照这种进行随机,第一个参数表示初始化值
np.random.seed(1)
torch.manual_seed(1)
torch.cuda.manual_seed_all(1)
torch.backends.cudnn.deterministic = True # 保证每次随机结果一样
# 打印时间
start_time = time.time()
print("Loading data...")
# 创建数据集
vocab, train_data, dev_data, test_data = build_dataset(config, args.word)
train_iter = build_iterator(train_data, config)
dev_iter = build_iterator(dev_data, config)
test_iter = build_iterator(test_data, config)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
# train
config.n_vocab = len(vocab)
# 初始化模型的
model = x.Model(config).to(config.device)
writer = SummaryWriter(log_dir=config.log_path + '/' + time.strftime('%m-%d_%H.%M', time.localtime()))
# 做一下模型初始化
if model_name != 'Transformer':
init_network(model)
print(model.parameters)
# 训练模型
train(config, model, train_iter, dev_iter, test_iter,writer)
TextRNN.py
# coding: UTF-8
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
class Config(object):
"""配置参数"""
def __init__(self, dataset, embedding):
# dataset 文件夹根目录名称
# embedding 映射表的文件名
self.model_name = 'TextRNN'
self.train_path = dataset + '/data/train.txt' # 训练集
self.dev_path = dataset + '/data/dev.txt' # 验证集
self.test_path = dataset + '/data/test.txt' # 测试集
self.class_list = [x.strip() for x in open(
dataset + '/data/class.txt').readlines()] # 类别名单
self.vocab_path = dataset + '/data/vocab.pkl' # 词表
self.save_path = dataset + '/saved_dict/' + self.model_name + '.ckpt' # 模型训练结果
self.log_path = dataset + '/log/' + self.model_name
self.embedding_pretrained = torch.tensor(
np.load(dataset + '/data/' + embedding)["embeddings"].astype('float32'))\
if embedding != 'random' else None # 预训练词向量
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备
self.dropout = 0.5 # 随机失活,随机丢弃网络中的部分神经元。这里丢弃其中的50%。 (可改)
self.require_improvement = 1000 # 若超过1000batch效果还没提升,则提前结束训练 (提前停止策略)(可改)
self.num_classes = len(self.class_list) # 类别数
self.n_vocab = 0 # 词表大小,在运行时赋值
self.num_epochs = 10 # epoch数 迭代轮数(可改)
self.batch_size = 128 # mini-batch大小(可改)
self.pad_size = 32 # 每句话处理成的长度(短填长切),多退少补
self.learning_rate = 1e-3 # 学习率
self.embed = self.embedding_pretrained.size(1)\
if self.embedding_pretrained is not None else 300 # 字向量维度, 若使用了预训练词向量,则维度统一
self.hidden_size = 128 # lstm隐藏层
self.num_layers = 2 # lstm层数
'''Recurrent Neural Network for Text Classification with Multi-Task Learning'''
class Model(nn.Module):
def __init__(self, config):
super(Model, self).__init__()
# 进行映射向量
if config.embedding_pretrained is not None:
self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False)
else:
self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1)
# config.embed把每个向量映射到多少个维度
# bidirectional=True 从左往右走后,又从右往左走。维度翻倍256
self.lstm = nn.LSTM(config.embed, config.hidden_size, config.num_layers,
bidirectional=True, batch_first=True, dropout=config.dropout)
# 最后加一个全连接层128*2 2层
self.fc = nn.Linear(config.hidden_size * 2, config.num_classes)
def forward(self, x):
x, _ = x
out = self.embedding(x) # 映射 [batch_size, seq_len, embeding]=[128, 32, 300]
out, _ = self.lstm(out) # LSTM 隐藏层进行训练
out = self.fc(out[:, -1, :]) # 最后全连接层进行训练 句子最后时刻的 hidden state
return out
train_eval.py
# coding: UTF-8
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from sklearn import metrics
import time
from utils import get_time_dif
from tensorboardX import SummaryWriter
# 权重初始化,默认xavier
def init_network(model, method='xavier', exclude='embedding', seed=123):
for name, w in model.named_parameters():
if exclude not in name:
if 'weight' in name:
if method == 'xavier':
nn.init.xavier_normal_(w)
elif method == 'kaiming':
nn.init.kaiming_normal_(w)
else:
nn.init.normal_(w)
elif 'bias' in name:
nn.init.constant_(w, 0)
else:
pass
def train(config, model, train_iter, dev_iter, test_iter,writer):
start_time = time.time()
# 设置训练模式
model.train()
# Adam训练模型 lr配置学习率
optimizer = torch.optim.Adam(model.parameters(), lr=config.learning_rate)
# 学习率指数衰减,每次epoch:学习率 = gamma * 学习率
# scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
total_batch = 0 # 记录进行到多少batch
dev_best_loss = float('inf')
last_improve = 0 # 记录上次验证集loss下降的batch数
flag = False # 记录是否很久没有效果提升
#writer = SummaryWriter(log_dir=config.log_path + '/' + time.strftime('%m-%d_%H.%M', time.localtime()))
for epoch in range(config.num_epochs):
print('Epoch [{}/{}]'.format(epoch + 1, config.num_epochs))
# scheduler.step() # 学习率衰减
for i, (trains, labels) in enumerate(train_iter):
#print (trains[0].shape)
# 前向传播
outputs = model(trains)
# 梯度清0
model.zero_grad()
# 损失函数
loss = F.cross_entropy(outputs, labels)
# 参数更新
loss.backward()
optimizer.step()
# 每执行一定的epoch我们执行一下验证集
if total_batch % 100 == 0:
# 每多少轮输出在训练集和验证集上的效果
# 获取标签真实值
true = labels.data.cpu()
# 预测值
predic = torch.max(outputs.data, 1)[1].cpu()
# 计算准确率
train_acc = metrics.accuracy_score(true, predic)
dev_acc, dev_loss = evaluate(config, model, dev_iter)
# 判断当前损失相对于上一次如果要小,则保存模型
if dev_loss < dev_best_loss:
dev_best_loss = dev_loss
torch.save(model.state_dict(), config.save_path)
improve = '*'
last_improve = total_batch
else:
improve = ''
time_dif = get_time_dif(start_time)
# 打印结果
msg = 'Iter: {0:>6}, Train Loss: {1:>5.2}, Train Acc: {2:>6.2%}, Val Loss: {3:>5.2}, Val Acc: {4:>6.2%}, Time: {5} {6}'
print(msg.format(total_batch, loss.item(), train_acc, dev_loss, dev_acc, time_dif, improve))
writer.add_scalar("loss/train", loss.item(), total_batch)
writer.add_scalar("loss/dev", dev_loss, total_batch)
writer.add_scalar("acc/train", train_acc, total_batch)
writer.add_scalar("acc/dev", dev_acc, total_batch)
# 又调整会训练模式中
model.train()
total_batch += 1
# 如果当前次数比上一次最好的大于我们设定的1000次容忍度,就结束
if total_batch - last_improve > config.require_improvement:
# 验证集loss超过1000batch没下降,结束训练
print("No optimization for a long time, auto-stopping...")
flag = True
break
if flag:
break
writer.close()
# 选择最好的一次,调用测试集
test(config, model, test_iter)
def test(config, model, test_iter):
# test
model.load_state_dict(torch.load(config.save_path))
model.eval()
start_time = time.time()
test_acc, test_loss, test_report, test_confusion = evaluate(config, model, test_iter, test=True)
msg = 'Test Loss: {0:>5.2}, Test Acc: {1:>6.2%}'
print(msg.format(test_loss, test_acc))
print("Precision, Recall and F1-Score...")
print(test_report)
print("Confusion Matrix...")
print(test_confusion)
time_dif = get_time_dif(start_time)
print("Time usage:", time_dif)
def evaluate(config, model, data_iter, test=False):
# 跳到验证集
model.eval()
loss_total = 0
predict_all = np.array([], dtype=int) # 预测的结果
labels_all = np.array([], dtype=int) # 正确的结果
with torch.no_grad():
for texts, labels in data_iter:
outputs = model(texts)
# 计算损失
loss = F.cross_entropy(outputs, labels)
loss_total += loss
labels = labels.data.cpu().numpy()
predic = torch.max(outputs.data, 1)[1].cpu().numpy()
# 获取所有的验证集的真实值和预测值
labels_all = np.append(labels_all, labels)
predict_all = np.append(predict_all, predic)
# 正确率
acc = metrics.accuracy_score(labels_all, predict_all)
# 如果我们在执行测试,它有一些评估指标
if test:
report = metrics.classification_report(labels_all, predict_all, target_names=config.class_list, digits=4)
confusion = metrics.confusion_matrix(labels_all, predict_all)
return acc, loss_total / len(data_iter), report, confusion
return acc, loss_total / len(data_iter)
utils.py
# coding: UTF-8
import os
import torch
import numpy as np
import pickle as pkl
from tqdm import tqdm
import time
from datetime import timedelta
MAX_VOCAB_SIZE = 10000 # 词表长度限制
UNK, PAD = '<UNK>', '<PAD>' # 未知字,padding符号
def build_vocab(file_path, tokenizer, max_size, min_freq):
vocab_dic = {}
with open(file_path, 'r', encoding='UTF-8') as f:
for line in tqdm(f):
lin = line.strip()
if not lin:
continue
content = lin.split('\t')[0]
for word in tokenizer(content):
vocab_dic[word] = vocab_dic.get(word, 0) + 1
vocab_list = sorted([_ for _ in vocab_dic.items() if _[1] >= min_freq], key=lambda x: x[1], reverse=True)[:max_size]
vocab_dic = {word_count[0]: idx for idx, word_count in enumerate(vocab_list)}
vocab_dic.update({UNK: len(vocab_dic), PAD: len(vocab_dic) + 1})
return vocab_dic
def build_dataset(config, ues_word):
if ues_word:
tokenizer = lambda x: x.split(' ') # 以空格隔开,word-level 定义分词器
else:
tokenizer = lambda x: [y for y in x] # char-level 定义分字器
# 加载语量表,词汇表(没有就根据训练集进行创建一个)
if os.path.exists(config.vocab_path):
vocab = pkl.load(open(config.vocab_path, 'rb'))
else:
vocab = build_vocab(config.train_path, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
pkl.dump(vocab, open(config.vocab_path, 'wb'))
print(f"Vocab size: {len(vocab)}") # 4762个
def load_dataset(path, pad_size=32):
contents = []
# 读取文本数据
with open(path, 'r', encoding='UTF-8') as f:
# 遍历每一行
for line in tqdm(f):
# 去掉换行符
lin = line.strip()
if not lin:
continue
# 分句得出句子和标签
content, label = lin.split('\t')
words_line = []
# 分字
token = tokenizer(content)
# 获取分字长度
seq_len = len(token)
# 判断超过我这里是10的长度的按照<PAD>补齐
if pad_size:
if len(token) < pad_size:
token.extend([vocab.get(PAD)] * (pad_size - len(token)))
else:
token = token[:pad_size]
seq_len = pad_size
# word to id
for word in token:
# 将字转换成语量表的索引id添加到words_line中,如果找不到用<UNK>代替
words_line.append(vocab.get(word, vocab.get(UNK)))
contents.append((words_line, int(label), seq_len))
# 返回语量表、标签与长度
return contents # [([...], 0), ([...], 1), ...]
# 加载训练集、验证集和测试集 参数:路径,分字。
train = load_dataset(config.train_path, config.pad_size)
dev = load_dataset(config.dev_path, config.pad_size)
test = load_dataset(config.test_path, config.pad_size)
# 返回语量表,训练集、验证集和测试集
return vocab, train, dev, test
class DatasetIterater(object):
def __init__(self, batches, batch_size, device):
self.batch_size = batch_size
self.batches = batches
self.n_batches = len(batches) // batch_size
self.residue = False # 记录batch数量是否为整数
# 判断能否整除
if len(batches) % self.n_batches != 0:
self.residue = True
self.index = 0
# 设置跑的设备
self.device = device
def _to_tensor(self, datas):
x = torch.LongTensor([_[0] for _ in datas]).to(self.device)
y = torch.LongTensor([_[1] for _ in datas]).to(self.device)
# pad前的长度(超过pad_size的设为pad_size)
seq_len = torch.LongTensor([_[2] for _ in datas]).to(self.device)
return (x, seq_len), y
def __next__(self):
if self.residue and self.index == self.n_batches:
batches = self.batches[self.index * self.batch_size: len(self.batches)]
self.index += 1
batches = self._to_tensor(batches)
return batches
elif self.index > self.n_batches:
self.index = 0
raise StopIteration
else:
batches = self.batches[self.index * self.batch_size: (self.index + 1) * self.batch_size]
self.index += 1
batches = self._to_tensor(batches)
return batches
def __iter__(self):
return self
def __len__(self):
if self.residue:
return self.n_batches + 1
else:
return self.n_batches
def build_iterator(dataset, config):
iter = DatasetIterater(dataset, config.batch_size, config.device)
return iter
def get_time_dif(start_time):
"""获取已使用时间"""
end_time = time.time()
time_dif = end_time - start_time
return timedelta(seconds=int(round(time_dif)))
if __name__ == "__main__":
'''提取预训练词向量'''
# 下面的目录、文件名按需更改。
train_dir = "./THUCNews/data/train.txt"
vocab_dir = "./THUCNews/data/vocab.pkl"
pretrain_dir = "./THUCNews/data/sgns.sogou.char"
emb_dim = 300
filename_trimmed_dir = "./THUCNews/data/embedding_SougouNews"
if os.path.exists(vocab_dir):
word_to_id = pkl.load(open(vocab_dir, 'rb'))
else:
# tokenizer = lambda x: x.split(' ') # 以词为单位构建词表(数据集中词之间以空格隔开)
tokenizer = lambda x: [y for y in x] # 以字为单位构建词表
word_to_id = build_vocab(train_dir, tokenizer=tokenizer, max_size=MAX_VOCAB_SIZE, min_freq=1)
pkl.dump(word_to_id, open(vocab_dir, 'wb'))
embeddings = np.random.rand(len(word_to_id), emb_dim)
f = open(pretrain_dir, "r", encoding='UTF-8')
for i, line in enumerate(f.readlines()):
# if i == 0: # 若第一行是标题,则跳过
# continue
lin = line.strip().split(" ")
if lin[0] in word_to_id:
idx = word_to_id[lin[0]]
emb = [float(x) for x in lin[1:301]]
embeddings[idx] = np.asarray(emb, dtype='float32')
f.close()
np.savez_compressed(filename_trimmed_dir, embeddings=embeddings)
注意我们在使用vscode跑时需要在launch.json
中加上model
参数。
{
"name": "Python: 当前文件",
"type": "python",
"request": "launch",
"program": "${file}",
"console": "integratedTerminal",
"justMyCode": true,
"args": [
"--model","TextRNN"
]
},
欢迎加群讨论技术,1群:677373950(满了,可以加,但通过不了),2群:656732739

